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A B S T R A C T

Electroencephalogram (EEG) is one of the mechanisms used to collect complex data. Its use includes evaluating
neurological disorders, investigating brain function and correlations between EEG signals and real or imagined
movements. The Topographic Image of Cortical Activity (TICA) records obtained by the EEG make it possible to
observe, through color discrimination, the cortical areas that represent greater or lesser activity. Percolation
Theory (PT) reveals properties on the aspects of fluid spreading from a central point, these properties being
related to the aspects of the medium, topological characteristics and ease of penetration of a fluid in materials.
The hypothesis presented so far considers that synaptic activities originate in points and spread from them,
causing different areas of the brain to interact in a diffusive associative behavior, generating electric and
magnetic fields by the currents that spread through the brain tissue and have an effect on the scalp sensors. Brain
areas spatially separated create large-scale dynamic networks that are described by functional and effective
connectivity. The proposition is that this phenomenon behaves like a fluidic spreading, so we can use the PT,
through the topological analysis we detect specific signatures related to neural phenomena that manifest changes
in the behavior of synaptic diffusion. This signature must be characterized by the Fractal Dimension (FD) values
of the scattering clusters, these values will be used as properties in the k-Nearest Neighbors (kNN) method, an
TICA will be categorized according to the degree of similarity to the preexisting patterns. In this context, our
hypothesis will consolidate as a more computational resource in the service of medicine and another way that
opens with the possibility of analysis and detailed inferences of the brain through TICA that go beyond a simply
visual observation, as it happens in the present day.

Introduction

Following the technological advances, computational techniques
have become crucial for the interpretation and analysis of complex
data, such as those generated by brain functioning and neural plasticity
[1] speech recognition [2], classification of behavioral states [3,4]
other issues of mental health and neural networks [5–7]. The electro-
encephalogram (EEG) is one of the mechanisms used to collect these
complex data, applied to evaluate neurological disorders, investigate
brain function and correlations between EEG signals and real or ima-
ginary movements [8]. The Topographic Image of Cortical Activity
(TICA) records obtained by the EEG [9] make it possible to observe,
through color discrimination, the cortical areas that represent greater

or lesser activity [10,11].
However, the search for interpretations and/or diagnoses from the

computational data results from biological phenomena, it is sometimes
difficult, due not always to these results, to present images with a de-
tectable symmetry to the eyes nor in patterns of shape or color. This has
led to the attempt to develop software for the analysis of signatures of
these patterns [12–15], including the use of Artificial Intelligence
techniques [16,17]. According to the study of [18], Artificial Neural
Networks (ANN) are used for the recognition and classification of
Magnetoencephalography (MEG) assays associated with the perception
of different graphic objects. In this case, the objects used were Necker
cubes, the comparison of mean RNA results along with their standard
deviation in multiple experimental sessions allowed access to some
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important characteristics of the interpretation of these objects, in-
cluding distinguishing states of certainty and doubt in the human brain,
particularizing characteristics of the decision making process. However,
the work of [19] takes notes the recognition of patterns in EEG and
electrocardiographic (ECG) signals of patients with focal epilepsy. We
analyzed biosynthesis before the onset of seizure and in periods without
seizures, the methodology used considers the generation of character-
istics computed on the discrete Wavelet transform of the EEG signal and
others related to the variability of the heart rate in the ECG signal. We
concluded that through machine learning algorithms one can predict
the outset of epileptic crisis.

Albeit the science has advanced in the development of new tools for
analysis of the patterns of neural phenomena [20–22], yet a technique
for analyzing these patterns has not been developed using Percolation
Theory (PT) on TICA obtained by the sign of EEG. According to [23], PT
is one of the simplest and most fundamental models in the mechanics of
phase transitions and statistical analyzes, showing the emergence of a
component, hyperconnected percolated cluster, despite its very simple
rules, PT was applied successful in describing a wide variety of natural,
technological and social systems. Also on PT [24], says that: PT reveals
properties on the aspects of fluid spreading from a central point, being
these properties referring to the aspects of the medium, topological
characteristics and ease of penetration of a fluid in materials. In this
context, we present the hypothesis of the use of PT as the basis for the
detection of signatures of neural phenomena in TICA. We understand
that when applying the PT one can particularize models of disordered
systems from their fractal structure, in this specific case, these sig-
natures will be inferred according to the color spreading patterns in the
TICA. The percolation clusters encompass different substructures, each
defined by its own fractal dimension [25–27]. The PT applied to the
fractal dimension calculation can categorize clusters, including seg-
mented images [28,29]. The recognition of the pattern will be done
through the application of the kNN method, which is a supervised
learning technique used in the area of Data Mining (DM) and Machine
Learning (ML), Artificial Intelligence (AI) subarea [30–32]. This way, a
TICA is categorized by considering its fractal values and according to
the degree of similarity to pre-existing TICA standards.

Therefore, we can find neural signatures in TICA provided by
electroencephalographic signal analysis software. Based on our hy-
pothesis, we can construct indirect signatures, not understood with
topographic visual inspection, but rather, the light of the scattering
results of the PT, identifying patterns of behavior and general proper-
ties of the TICA.

Hypothesis

The hypothesis here presented considers that synaptic activities that
originate in specific points and spread from them, causing different
areas of the brain to interact in a diffusive associative behavior. Electric
and magnetic fields are generated by the currents that propagate
through the brain tissue and produce effect on the scalp sensors [33].
Spatially separated brain areas form large-scale dynamic networks that
are described by functional and effective connectivity [34]. The pro-
position is that this phenomenon behaves like a fluidic spreading, so we
can use the PT, through the topological analysis we detect specific
signatures related to neural phenomena that manifest changes in the
behavior of synaptic diffusion. This signature must be characterized by
the FD values of the scattering clusters. These values will be used as
properties in the kNN method. The kNN works by sorting the input
elements according to the data closest to their characteristics. The
closest observations are defined as those with the smallest Euclidean
distance to the point on consideration [35].

Our hypothesis has as base the principle of PT, which can support
the process of quantification and classification of images in diagnostic
support systems, with information about possible grouping character-
istics (clusters) presented in images [29]. We understand that due to

TICA be represented by EEG power activity in specific cortical areas and
visualized in color ranging from greater cortical activity (red) to lower
cortical activity (blue) as seen in Image 1. Said that, PT can be used to
subsidize recognition of the pattern of cortical activity, since the scat-
tering of colors in the clusters correspond to the topological structure
[36]. The PT is the simplest model of disordered systems that has fractal
structure, percolation clusters encompass different substructures, each
defined by its own FD [37]. A fractal measure is considered as some-
thing very irregular to fit the classical geometry [38]. In this context,
the use of PT in the display of fractal structures can characterize the
geometric signature [39] and categorize neural phenomena. In this
case, the calculation of FD in each cluster of TICA may represent these
irregular and fragmented (non-Euclidean) patterns [37]. Therefore, by
analyzing the clusters through the perimetric surfaces of the TICA, we
will obtain the FD of each cluster, these values will be used as prop-
erties for the use of the kNN method and through supervised machine
learning to infer about the recognition of pattern of a given TICA.

Thus, the hypothesis for the development of an algorithm to obtain
patterns of cortical activity with the use of PT and FD may exceed the
knowledge frontier. This occurs due to the process of forming the to-
pological structure and the distribution of colors in a TICA to present an
evolution in the computational analysis of colored images from biolo-
gical phenomena, as is the case of EEG data. For the viability of this
process, each TICA will be represented by 3 clusters, each one pre-
vailing one of the channels of the RGB colors system (red, green and
blue) as observed in Image 2. The processing of the algorithm will start
having a TICA as input (a); following by applying PT (b) the image will
be segmented into three RGB clusters (c); after calculating the radius
and the center of mass (d) the logarithmic properties of the radius and
the center of mass will be used to obtain the values for RGB (d). The 3
fractals (e) of each TICA will be used by the kNN as parameters for the
calculation of the Euclidean distance, and thus recognize the TICA
pattern input.

Hypothesis evaluation

Studies demonstrate that the foundations of PT allied or not with FD
provide the resources to establish standards in several areas of knowl-
edge [40–42]. In medical science and biology, fractal properties have
been reported in several cases [43]. In [44], it is observed that the
percolated nature of the tumor vasculature implies that the vascular
networks of the tumor have architectural obstacles inherent in the re-
lease of diffusible substances, such as oxygen and drugs. Also based on
TP, another study shows that tumor diffusion and invasion of

Image 1. Topographic Image of Cortical Activity (TICA) obtained with the
EEGLab software. A color gradient is observed along with the variation from red
to blue, representing respectively the occurrence of the highest to the lowest
cortical activity.
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surrounding host tissue is positively correlated with tissue homogeneity
[45]. A percolation model in a square (two-dimensional) network was
applied to study magnetic resonance imaging (MR) by capturing con-
trasts and its fractal structure, the authors concluded that the blood
perfusion in a network of two-dimensional tumor vessels has a fractal
structure, regardless of type and tumor size [37]. Besides, a study using
FD suggests that mitochondrial inhibition may be an effective and se-
lective therapeutic strategy in mesothelioma, and identifies mitochon-
drial morphology as a possible predictor of response to targeted mi-
tochondrial inhibition [46]. Further on being a tool for the diagnosis of
breast, lung and brain cancer, and one of the parameters to reflect the
microstructure of a clot [47].

Until then, the percolation techniques, when applied to digital
images, were limited to binary or grayscale images. In 2017, [29] they
developed a method to quantify and classify color images of non-
Hodgkin lymphomas (NHL) based on PT. They used the values of the
ROC curve (AUC), demonstrating that percolation is suitable for ap-
plication as a complementary measure for other fractal based char-
acterization methods. In this study it was observed that the technique
improves the differentiation between different classes of NHL.

Regarding kNN, several studies [48–50] present the use of the
method for the classification of data related to medical science. Parti-
cularly, in relation to fractals extracted from medical images, we can
mention the study of [51], in which kNN was introduced and studied as
a precise method to estimate the fractal dimension of images, the
proposed method was used to differentiate carotid atheromatous pla-
ques symptomatic and asymptomatic. Also related to carotid plaques, in
[52] is presented a computer-assisted system using multi-faceted tex-
ture analysis, neural network classifiers, kNN statistical classifier, and
pattern recognition techniques for the automated characterization of
carotid plaques recorded from ultrasound imaging. In both, good results
were obtained using the kNN method.

We understand that in order to test our hypothesis, it is convenient
to include 1000 (one thousand) TICA from individuals that during EEG
collection will perform movements to produce artifacts: eye blinking,
saccadic movement, tongue movement, atm and grinding of teeth, with
a total of 200 TICA for each artifact above. There should then be 5 TICA
patterns that will be used to classify the input TICA through the kNN
method, as seen in Image 3.

Hypothesis consequence and discussion

Using of computational resources for diagnostic assistance is a
reality that is increasingly observed today in the neurological area,

recent studies support this assertion [53–56]. The use of computational
resources optimizes the obtaining of diagnoses and consequently ac-
celerates treatments, as well as the prevention of diseases. For example
[57] presents a software used to investigate the utility of Diffusion
Tensor Image (DTI) as a marker for white matter damage in small vessel
disease and to assess its correlation with cognitive function. The study
has shown promise as a useful tool to explore the mechanisms of cog-
nitive dysfunction in this disease and has the potential to be used as a
surrogate marker in therapeutic trials. Though in [58], it is presented a
system of diagnosis and treatment of vision (VisDaT) that is intended to
help therapists in the diagnosis and appropriate treatment of disparities
of vision in children with cerebral dysfunctions. This uses a computer
connected to two monitors and equipped with specialized software, the
system encourages the children's vision with a dedicated stimulus and
post hoc analyzes of recorded sessions that allow decisions to be made
regarding future treatment. In this context, our hypothesis will con-
solidate as a more computational resource in the service of medicine
and another way that opens with the possibility of analysis and detailed
inferences of the brain through TICA that go beyond a simply visual
observation, as it happens in the present day and this characterizes it-
self as an advantage. It should be noted, however, that in supervised
machine learning systems, such as the one presented in this work with
the kNN method, the success of the input TICA inference will depend on
the pre-existing standards already stored.
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